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The asymptotic quasinormal mode (QNM) spectrum of four dimensional

Schwarzschild-anti de Sitter (AdS) black holes were calculated analytically for the first

time by Cardoso et al. in [1], where the authors developed a method based on the mon-

odromy technique of Motl and Neitzke [2, 3]. Later, Natario and Schiappa [4] generalized

the analytic results of [1] to spacetime dimensions greater than four. In a recent paper [5],

Daghigh and Green reanalyzed the asymptotic QNM spectrum of Schwarzschild-AdS black

holes in arbitrary spacetime dimensions (D ≥ 4) using a different analytic technique called

the complex coordinate WKB method [6–8]. This method was first applied to asymp-

totic QNMs of black holes by Andersson and Howls in [9], where the authors calculate the

asymptotic QNM frequencies of non-rotating black holes. The authors of [5] not only con-

firm the analytic results found by Cardoso et al.[1] and Natario and Schiappa [4], but also

demonstrate that in certain spacetime dimensions the analytic techniques they use predict

the existence of new regions of the asymptotic QNM frequency spectrum. These regions

have not previously appeared or been explored in the literature [10–15]. The QNMs of

one of these regions, which appears only in even spacetime dimensions, resemble the nor-

mal modes in a pure AdS space. The real part of the QNM frequencies of such a region

approaches infinity while the damping rate approaches a finite value. In [5], the name

“highly real” is chosen for these modes to correspond to the widely used term “highly

damped”, which is the situation when the imaginary part of the frequency is much larger

than the real part. If the highly real QNMs do indeed exist, it is argued in [5] that these

modes become the most relevant modes in the context of AdS-CFT correspondence. They

can also serve as a testing ground for the new interpretation of the black hole asymptotic

QNMs proposed by Maggiore [16]. The very interesting consequences of the existence of

highly real QNMs motivates numerical and analytical investigations to prove or disprove

the existence of these modes.

In this paper, we use the analytic technique which was developed by Cardoso et al.

in [1] to see if we can reproduce the results of [5] for highly real QNMs. At first glance, it

is not obvious whether the two different analytic techniques mentioned above produce the

same results. Using the complex coordinate WKB method, Daghigh and Green [5] were

able to obtain two unphysical and two physical solutions for highly real QNM frequencies

by changing the dominancy of the WKB solutions on the pairs of Stokes lines, which are

crossed on the path taken along anti-Stokes lines, and by rotating clockwise (in the upper

half of the complex plane) and counter-clockwise (in the lower half of the complex plane)

close to the singularity at the origin of the complex plane (r = 0). In the method

developed by Cardoso et al.[1], there are no use of Stokes1 lines. Therefore, one can only

find two solutions for the highly real QNMs by rotating clockwise (path 1 in figure 1) or

counterclockwise (path 2 in figure 1) close to the origin of the complex plane. These two

solutions could be the unphysical ones which were discarded by the authors of [5]. If that

is the case, then we can conclude that we have found strong evidence against the existence

of the highly real QNMs. In what follows, we derive an expression for highly real QNM

frequencies using the analytic technique developed in [1].

1Note that what we call anti-Stokes lines in this paper are called Stokes lines in [1] and [4].
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Various classes of non-rotating black hole metric perturbations in a spacetime with

dimension D ≥ 4 are governed generically by a Schrödinger wave-like equation of the form

d2Ψ

dz2
+

{

ω2 − V [r(z)]
}

Ψ = 0 , (1)

where V (r) is the QNM potential obtained by Ishibashi and Kodama [17–19] for scalar

(reducing to polar at D = 4), vector (reducing to axial at D = 4), and tensor (non-

existing at D = 4) perturbations. It is worthwhile to mention that the effective potential

for tensor perturbations is equivalent to that of the decay of a test scalar field in a black

hole background in every spacetime dimensions including D = 4. Following [1] and [4], we

assume the perturbations depend on time as eiωt. Consequently, in order to have damping,

the imaginary part of ω (ωI)must be positive. Keep in mind that in [5], the authors assume

the perturbations depend on time as e−iωt instead of eiωt. In eq. (1), the tortoise coordinate

z is defined by

dz =
dr

f(r)
, (2)

where f(r) is related to the spacetime geometry, and is given by

f(r) = 1 − 2µ

rD−3
− λr2 . (3)

The ADM mass, M , of the black hole is related to the parameter µ by

M =
(D − 2)AD−2

8πGD
µ , (4)

where GD is the Newton gravitational constant in spacetime dimension D and An is the

area of a unit n-sphere,

An =
2π

n+1

2

Γ
(

n+1
2

) . (5)

The value of the cosmological constant, Λ, is given by

Λ =
(D − 1)(D − 2)

2
λ . (6)

The effective potential in AdS space is zero at the event horizon (z → −∞) and diverges

at spatial infinity (z → η, where η is a constant discussed in detail in [1, 4, 5]2). Therefore,

the asymptotic behavior of the solutions is

Ψ(z) ≈
{

eiωz as z → −∞
0 as z → η ,

(7)

which represents an “out-going” wave at the event horizon and no waves at spatial infinity.

To determine the condition on highly real QNMs using the method developed by

Cardoso et al.[1], we need to know the behavior of anti-Stokes lines in the complex r-plane.

The details of this process have been explained in detail in [1, 4]. As an example, in

2The symbol used in [1] and [4] for η is x0.
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Figure 1. Schematic presentation of the anti-Stokes lines in the complex r-plane for Schwarzschild-

AdS black holes in four spacetime dimensions. RH is the event horizon. The two dashed arrows

show the paths we take along anti-Stokes lines to determine the condition on the highly real QNM

frequency.

figure 1, we show the schematic behavior of the anti-Stokes lines in the complex r-plane

for Schwarzschild-AdS black holes in D = 4, when η is a negative real constant. For large

black holes

η = − 1

4TH sin
(

π
D−1

) , (8)

where TH is the Hawking temperature. In spacetime dimensions six and higher, we will still

have an anti-Stokes line that extends to infinity along the negative real axis and an anti-

Stokes line that extends to the event horizon, RH , along the positive real axis. The only

difference is that in higher dimensions we have more anti-Stokes lines extending above and

below the real axis. In order to determine the condition on highly real QNM frequencies, the

same paths shown in figure 1 will be taken in every spacetime dimension. For numerically

generated pictures of anti-Stokes lines in D ≥ 4, refer to [5]. Once we determine the

structure of anti-Stokes lines, we need to know the behavior of the wavefunction Ψ near

the singularity at r = 0 and when r → ∞. Near r = 0, the tortoise coordinate simplifies to

z ∼ − rD−2

2(D − 2)µ
(9)

and the potential simplifies to

V [r(z)] ∼ j2 − 1

4z2
, (10)

where j = 2 for vector perturbations and j = 0 for scalar and tensor perturbations [4]. In

this region, the differential equation (1) can be solved exactly. The solution is

Ψ(z) = A+

√
2πωzJ j

2

(ωz) + A−

√
2πωzJ

− j

2

(ωz) , (11)

where Jν represents a Bessel function of the first kind and A± are complex constants.

Note that D is an even number because highly real QNMs only exist in even spacetime

dimensions [5]. Therefore, it is clear that near the origin of the complex plane, ωz ≪ −1

– 4 –
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on the anti-Stokes line that extends to −∞ along the real axis. As a result, we can use the

approximation

Jν(x) ∼
√

2

πx
cos

(

x +
νπ

2
+

π

4

)

when x ≪ −1 (12)

to find that

Ψ(z) ∼ 2A+ cos(ωz + α+) + 2A− cos(ωz + α−)

= (A+eiα+ + A−eiα−)eiωz + (A+e−iα+ + A−e−iα−)e−iωz . (13)

Here

α± =
π

4
(1 ± j) . (14)

The result (13) is valid on any anti-Stokes line with negative ωz. Note that in addition to

the anti-Stokes line on the negative real axis, ωz is negative on the anti-Stokes line along

the positive real axis.

In the limit where r → ∞, the tortoise coordinate simplifies to

z → η − 1

|λ|r . (15)

In this limit, the QNM potential also takes the simple form

V [r(z)] ∼ j2
∞ − 1

4(z − η)2
, (16)

where j∞ = D − 1,D − 3,D − 5 for tensor, vector, and scalar perturbations respectively.

Note that the potential (16) is zero for vector (axial) and scalar (polar) perturbations in

four spacetime dimensions. In reality, the QNM potential for these perturbations in four

spacetime dimensions asymptotes to a constant as r → ∞ (z → η). This may look prob-

lematic, but note that we are doing the calculations in the asymptotic limit where |ω| → ∞.

Therefore, in the wave equation (1), replacing the QNM potential, which asymptotes to a

constant for large r, with a zero should not in principal affect the outcome. In fact, Natario

and Schiappa in [4] have used exactly the same potential in eq. (16) and their results for

polar and axial perturbations in four spacetime dimensions are in perfect agreement with

the previous numerical calculations. It is clear that such modification of the potential at

large r does not affect the gap term in the QNM frequency. However, we suspect that this

modification may affect the offset term. In fact, it is indicated in [4] that the offset term

of polar perturbations does not match the numerical results in [11] for large black holes.

This mismatch may originate from the modification of the potential in four spacetime di-

mensions. This issue clearly needs further investigation. The differential equation (1) can

be solved exactly in the region r ∼ ∞ and the solution is

Ψ(z) ∼ B+

√

2πω(z − η)J j∞
2

(ω(z − η)) + B−

√

2πω(z − η)J
− j∞

2

(ω(z − η)) , (17)

where B± are complex constants. The boundary condition at infinity tells us that the wave

function Ψ should die off as r → ∞. This requires B− = 0. Also, since

ω(z − η) ∼ − ω

|λ|r (18)

– 5 –
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has a positive real value on the anti-Stokes line along the negative real axis, we can use

the approximation

Jν(x) ∼
√

2

πx
cos

(

x − νπ

2
− π

4

)

when x ≫ 1 (19)

to write the solution (17) as

Ψ(z) ∼ 2B+ cos[ω(z − η) − β] = B+e−iβeiω(z−η) + B+eiβe−iω(z−η) , (20)

where

β =
π

4
(1 + j∞) . (21)

Note that the wavefunction Ψ should not change in character along anti-Stokes lines. There-

fore combining eqs. (13) and (20) results in the first condition on A+ and A−, where

(

A+eiα+ + A−eiα−
)

eiωηeiβ =
(

A+e−iα+ + A−e−iα−
)

e−iωηe−iβ . (22)

In order to impose the boundary condition at the event horizon, we need to move to the

anti-Stokes line on the positive real axis which ends at the horizon. We can do this by a

rotation of either −π (path 1 in figure 1) or +π (path 2 in figure 1) near the singularity at

r = 0. The rotation of ±π in the r coordinate corresponds to a rotation of ±π(D − 1) in

the tortoise coordinate. From

Jν(x) = xνφ(x) , (23)

where φ is an even holomorphic function of x, it can be shown that after a rotation of

−π(D − 1) in the tortoise coordinate one can write

A±

√
ωzJ

±
j

2

(ωz) ∼ e−i2(D−2)α± cos(ωz + α±) when ωz ≪ −1 . (24)

Therefore, after a rotation of −π(D − 1), the solution (13) changes to

Ψ(z) ∼ 2A+e−i2(D−2)α+ cos(ωz + α+) + 2A−e−i2(D−2)α− cos(ωz + α−)

=
(

A+e−i[2(D−2)−1]α+ + A−e−i[2(D−2)−1]α−

)

eiωz

+
(

A+e−i[2(D−2)+1]α+ + A−e−i[2(D−2)+1]α−

)

e−iωz . (25)

According to the boundary condition (7), the solution on the anti-Stokes line ending at

the event horizon should behave as eiωz. This fact results in a second condition on the

coefficients A+ and A−, where

A+e−i[2(D−2)+1]α+ + A−e−i[2(D−2)+1]α− = 0 . (26)

Equations (22) and (26) can only have nontrivial solutions if

∣

∣

∣

∣

∣

e−i[2(D−2)+1]α+ e−i[2(D−2)+1]α−

eiα+eiωηeiβ − e−iα+e−iωηe−iβ eiα−eiωηeiβ − e−iα−e−iωηe−iβ

∣

∣

∣

∣

∣

= 0 . (27)

– 6 –
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In four spacetime dimensions, this equation leads to

e2iωηe2iβ =
e−i5α+e−iα− − e−i5α−e−iα+

e−i5α+eiα− − e−i5α−eiα+

= e−i(α++α−) sin[2(α+ − α−)]

sin[3(α+ − α−)]

= e−i(α++α−) 2 cos(α+ − α−)

4 cos2(α+ − α−) − 1
. (28)

Since α+ + α− = π
2 and α+ −α− = j

2π, it is easy to show that the above equation leads to

ωη = −β − nπ − π

4
+

i

2
ln



2 cos

(

j

2
π

)

− 1

2 cos
(

j
2π

)



 as n → ∞ . (29)

This result is in perfect agreement with the result obtained by Daghigh and Green in [5].

Of course, the sign difference in the imaginary part of ωη is due to the fact that our per-

turbations depend on time as eiωt while Daghigh and Green use e−iωt. Since η is a negative

real constant according to both [1] and [5], eq. (29) leads to QNM frequencies with nega-

tive imaginary part for all types of perturbations. QNMs with ωI < 0 cannot be physical

because these modes grow with time instead of getting damped. By repeating the same

calculations starting from eq. (27), it is easy to show that, in D ≥ 6 spacetime dimensions,

we also obtain QNM frequencies with negative damping which cannot be physical.

Let us now consider path 2 in figure 1, where we have to make a rotation of π instead

of −π in the r coordinate. We can repeat the steps (24) through (27) with a rotation of

π(D − 1) in the tortoise coordinate to find

∣

∣

∣

∣

∣

ei[2(D−2)−1]α+ ei[2(D−2)−1]α−

eiα+eiωηeiβ − e−iα+e−iωηe−iβ eiα−eiωηeiβ − e−iα−e−iωηe−iβ

∣

∣

∣

∣

∣

= 0 . (30)

This equation leads to a condition on ω, where

e2iωηe2iβ =
ei[2(D−2)−1]α+e−iα− − ei[2(D−2)−1]α−e−iα+

ei[2(D−2)−1]α+eiα− − ei[2(D−2)−1]α−eiα+

= e−i(α++α−) sin[(D − 2)(α+ − α−)]

sin[(D − 3)(α+ − α−)]

= e−i(α++α−) D − 2

D − 3
cos(α+ − α−)

×1 − (D−2)2−22

3! sin2(α+ − α−) + [(D−2)2−22][(D−2)2−42]
5! sin4(α+ − α−) − . . .

1 − (D−3)2−12

3! sin2(α+ − α−) + [(D−3)2−12][(D−3)2−32]
5! sin4(α+ − α−) − . . .

.

(31)

After entering the values for α± , it is easy to show that the above condition on ω gives

ωη = −β − nπ − π

4
− i

2
ln

[

D − 2

D − 3
cos

(

j

2
π

)]

as n → ∞. (32)

– 7 –
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This result again matches perfectly with the result obtained by Daghigh and Green in [5]

considering the difference in the choice of the time dependency of the perturbations. Since

η is a negative real constant, it is clear that these QNM frequencies have positive imag-

inary part. This indicates the presence of damping which makes these QNMs physically

meaningful. For more arguments on why these modes may be physical see [5].

Conclusions. In this paper, we use a different analytic technique to confirm the results

obtained by Daghigh and Green in [5]. The two analytic methods lead to identical solutions.

The only difference is that the complex coordinate WKB method which is used in [5] gives

two physical and two unphysical solutions, but the technique used in this paper results

in only one physical (eq. (32)) and one unphysical (eq. (29)) solution. No difference has

been observed between the outcome of these two analytic methods in the past. Further

investigation of the difference found in this paper may lead to a deeper understanding

of these two analytic techniques and their possible limitations. While this difference is

interesting, we do not see it as a major concern. After all, the calculations are done in

the asymptotic limit where the overtone number, n, approaches infinity. In the large n

limit, we can neglect all the finite terms in the real part of the highly real QNM frequency.

Neglecting the finite terms will resolve the difference between the two analytic techniques.

The results of this paper leave no doubt that the analytic techniques in the literature [1, 5]

predict the existence of the highly real QNMs of Schwarzschild-AdS black holes. If these

modes do not exist, the big question is why they appear in analytic calculations which are

very successful in producing the correct asymptotic QNM frequencies of Schwarzschild-AdS

black holes. If these modes do indeed exist, then the question is why the previous numerical

calculations [10–12, 14] were not able to detect such modes. It is important to note that

numerical calculations should be able to generate the unphysical QNM frequencies as well

as the physical ones (see for example [20]). In order to shed light on these issues, further

numerical and analytical investigations are necessary.
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